Skip to Content

Sample Actuarial Problems

Apply your math skills to actuarial exam questions.

Actuaries earn professional credentials by passing a series of examinations. This online exam is designed to give you an idea of the types of questions you might encounter on the preliminary actuarial examinations administered by the Casualty Actuarial Society and Society of Actuaries. The sample problems are actual questions from prior exams, but they do not cover all the topics or all levels of difficulty.

Answer the five multiple choice questions below, then click submit to see your results.


You are given

Determine P[A] .


An insurer offers a health plan to the employees of a large company. As part of this plan, the individual employees may choose exactly two of the supplementary coverages A, B, and C, or they may choose no supplementary coverage. The proportions of the company's employees that choose coverages A, B, and C are 1?4 , 1?3 and 5?12 respectively.

Determine the probability that a randomly chosen employee will choose no supplementary coverage.


A blood test indicates the presence of a particular disease 95% of the time when the disease is actually present. The same test indicates the presence of the disease 0.5% of the time when the disease is not present. One percent of the population actually has the disease. Calculate the probability that a person has the disease given that the test indicates the presence of the disease.


A tour operator has a bus that can accommodate 20 tourists. The operator knows that tourists may not show up, so he sells 21 tickets. The probability that an individual tourist will not show up is 0.02, independent of all other tourists. Each ticket costs 50, and is non-refundable if a tourist fails to show up. If a tourist shows up and a seat is not available, the tour operator has to pay 100 (ticket cost + 50 penalty) to the tourist. What is the expected revenue of the tour operator?


Let T1 be the time between a car accident and reporting a claim to the insurance company. Let T2 be the time between the report of the claim and payment of the claim. The joint density function of T1 and T2, f(t1, t2), is constant over the region 0 < t1 < 6, 0< t2 < 6, t1 + t2 < 10, and zero otherwise. Determine E[T1 + T2], the expected time between a car accident and payment of the claim.