Skip to Content

Sample Actuarial Problems

Apply your math skills to actuarial exam questions.

Actuaries earn professional credentials by passing a series of examinations. This online exam is designed to give you an idea of the types of questions you might encounter on the preliminary actuarial examinations administered by the Casualty Actuarial Society and Society of Actuaries. The sample problems are actual questions from prior exams, but they do not cover all the topics or all levels of difficulty.

Answer the five multiple choice questions below, then click submit to see your results.

1

A survey of a group's viewing habits over the last year revealed the following information:

  1. 28% watched gymnastics
  2. 29% watched baseball
  3. 19% watched soccer
  4. 14% watched gymnastics and baseball
  5. 12% watched baseball and soccer
  6. 10% watched gymnastics and soccer
  7. 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports during the last year.

2

A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car, the dealer also tries to persuade the customer to buy an extended warranty for the car. Let X denote the number of luxury cars sold in a given day, and let Y denote the number of extended warranties sold.
P(X = 0, Y = 0) = 1 / 6
P(X = 1, Y = 0) = 1/12
P(X = 1, Y = 1) = 1 /6
P(X = 2, Y = 0) = 1 /12
P(X = 2, Y = 1) = 1 /3
P(X = 2, Y = 2) = 1/6

What is the variance of X?

3

A tour operator has a bus that can accommodate 20 tourists. The operator knows that tourists may not show up, so he sells 21 tickets. The probability that an individual tourist will not show up is 0.02, independent of all other tourists. Each ticket costs 50, and is non-refundable if a tourist fails to show up. If a tourist shows up and a seat is not available, the tour operator has to pay 100 (ticket cost + 50 penalty) to the tourist. What is the expected revenue of the tour operator?

4

The stock prices of two companies at the end of any given year are modeled with random variables X and Y that follow a distribution with joint density function

What is the conditional variance of Y given that X = x ?

5

An insurer's annual weather-related loss, X, is a random variable with density function

Calculate the difference between the 30th and 70th percentiles of X.